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Inorganic perovskites (CsPbX3,  X = halide anion), contain-
ing  no  volatile  organic  cations,  exhibit  better  thermal  stabil-
ity than organic–inorganic hybrid perovskites[1, 2]. Among inor-
ganic  perovskites, α-CsPbI3 (cubic  phase)  possesses  a  relat-
ively  suitable  bandgap  of  ~1.7  eV.  CsPbI3 perovskite  solar
cells  (PSCs)  have  demonstrated  power  conversion  efficien-
cies  (PCEs)  over  20%[3−5].  However,  either  in  ambient  atmo-
sphere  or  in  glovebox, α-CsPbI3 tends  to  transform  into  a
non-photoactive δ-phase (orthorhombic phase) at room tem-
perature, leading to degraded device performance[6−8].  Repla-
cing  I– with  smaller  Br– can  stabilize  the  cubic  phase  due  to
the increased Goldschmidt  tolerance factor.  Yet  the bandgap
will increase from ~1.7 eV (CsPbI3) to ~2.3 eV (CsPbBr3), result-
ing  in  insufficient  light  absorption[9−12].  Therefore,  taking
both phase stability  and light-harvesting ability  into  account,
CsPbI2Br (bandgap ~1.9 eV) becomes a superior choice for sol-
ar  cells  compared  with  other  inorganic  perovskites[13].  In  the
past  5  years,  many  efforts  have  been  devoted  to  enhancing
the performance of CsPbI2Br PSCs, such as interface engineer-
ing[14, 15],  element  doping[16],  crystallization  optimizing[17, 18],
and  additive  engineering[19−21].  Inspiringly,  PCEs  over  17%
were  achieved  for  CsPbI2Br  PSCs[22, 23].  However,  CsPbI2Br
films are usually  prepared by spin-coating,  which wastes pre-
cursor  solution  and  is  not  compatible  with  fast  and  continu-
ous manufacturing.  Therefore,  spin-coating is  not suitable for
low-cost  and  high-productivity  industrial  production.  Blade-
coating was used to prepare CsPbI2Br films, but the PCE is be-
low  15%[24].  Recently,  high-quality  organic–inorganic  hybrid
perovskite  films  were  made  by  drop-coating[25−27].  Unlike
spin-coating, the substrate in drop-coating method is motion-
less, leading to different film-forming conditions and film qual-
ity.  Drop-coating  to  make  inorganic  perovskite  films  has  not
been  investigated  yet.  In  this  work,  we  used  drop-coating  to
make CsPbI2Br films. Isopropanol (IPA) was added into the pre-
cursor solution to improve the wettability of the solution, res-
ulting in improved film morphology, reduced trap states, and
enhanced  performance  of  PSCs.  A  PCE  of  16.27%  was
achieved.

The preparation of CsPbI2Br films by drop-coating is illus-
trated  in Fig.  1(a).  A  drop  of  precursor  solution  is  dropped
onto a preheated substrate, the solution can spread spontan-
eously,  forming  a  round  wet  film,  which  is  dried  by  N2 blow-

ing.  Only  1 μL  CsPbI2Br  solution  is  needed  for  a  1.49  ×
1.49 cm2 substrate.  Unlike the solution of  2D perovskites,  the
spreading of CsPbI2Br solution is nonuniform, leading to poor
film  quality  (Fig.  S1).  Adding  a  small  amount  of  IPA  into
CsPbI2Br solution can improve the wettability  of  the solution,
leading to improved film quality (Fig. S1).

The X-ray diffraction (XRD) patterns for CsPbI2Br films are
shown  in Fig.  1(b).  The  film  presents  three  main  peaks  at
14.7°,  20.9°,  and  29.8°,  assigned  to  the  (100),  (110),  and  (200)
planes  of α-phase  CsPbI2Br,  respectively.  The  film  made  from
the  solution  with  IPA  has  smaller  full  width  at  half  maximum
(FWHM) for the (100) and (200) peaks (Table S1), indicating im-
proved  crystallinity.  Moreover,  the  much  higher  intensity  ra-
tios of the peaks (Table S2) for the film prepared from the solu-
tion  with  IPA  suggest  a  higher  degree  of  preferred  orienta-
tion, which is beneficial for charge transport[28, 29].

The  film  morphology  was  studied  by  scanning  electron
microscopy (SEM) (Figs. 1(c) and 1(d)) and atomic force micro-
scopy  (AFM)  (Fig.  S2).  Some  pinholes  (highlighted  by  red
circles  in Fig.  1(c))  were  observed  in  the  film  made  from  the
pristine  solution.  The  pinholes  could  become  shunt  path-
ways  in  solar  cells,  thus  decreasing  photocurrent.  The  film
made  from  the  solution  with  IPA  was  pinhole-free,  with  lar-
ger  grain,  leading  to  less  grain  boundaries  and  reduced
charge  recombination.  The  film  made  from  the  solution  with
IPA  presents  reduced  root-mean-square  (RMS)  roughness
(11.1  nm)  than  that  of  the  film  made  from  the  pristine  solu-
tion  (25.8  nm).  The  film  made  from  the  solution  with  IPA
shows higher absorbance (Fig. S3(a)) due to the improved cov-
erage  and  crystallinity,  and  it  presents  a  bandgap  of  1.91  eV
(Fig. S3(b)).

The  trap-state  density  was  studied  by  using  the  space-
charge  limited  current  (SCLC)  method.  Electron-only  devices
with  the  structure  of  ITO/SnO2/ZnO/CsPbI2Br/PC61BM/Ag
were  made,  and  the  dark  current  was  measured  (Fig.  1(e)).
The  films  made  with  or  without  IPA  show  trap-filled  limit
voltages  (VTFL)  of  0.14  and  0.30  V,  respectively,  correspond-
ing to a trap-state density of 6.37 × 1015 and 1.12 × 1016 cm−3,
respectively.  The  reduced  trap-state  density  results  from  the
enhanced  crystallinity,  increased  grain  size,  and  improved
film  morphology,  leading  to  enhanced  photoluminescence
(PL) and prolonged PL lifetime (Fig. S4).

Solar  cells  with  a  structure  of  ITO/SnO2/ZnO/CsPbI2Br/D-
PTAA/MoO3/Ag (Fig. S5) were made to investigate the photo-
voltaic  performance.  The  charge-transport  layers  and
CsPbI2Br layer can be seen clearly from the cross-section SEM
image  of  the  device  (Fig.  S6).  The  amount  of  IPA  in  the  solu-
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tion  and  the  drying  temperature  were  optimized  to  obtain
the  best  device  performance  (Tables  S3  and  S4).  Compared
with the cells made without IPA, the average PCE for the cells
made with IPA increased from 13.92% to 15.57%,  and the re-
producibility  was  improved  obviously  (Fig.  S7),  which  is  due
to  the  improved  CsPbI2Br  film  quality.  The  best  PCE  of  the
cells  increased  from  15.15%  to  16.27%  (Fig.  1(f)),  mainly  due
to  the  enhanced Jsc and  FF.  The  external  quantum  efficiency
(EQE) was also improved (Fig. S8), due to the enhanced absorb-
ance and reduced trap states in CsPbI2Br films.  The improved
film morphology can reduce charge recombination and facilit-
ate  charge transport,  leading to  enhanced Jsc

[30−32].  An integ-
rated  current  density  of  15.08  mA/cm2 is  obtained  from  the
EQE  spectrum  of  the  best  cell,  consistent  with  the Jsc (15.68
mA/cm2)  from J–V measurement.  PSCs via spin-coating  were
also made for comparison, which gave a lower PCE of 15.18%
(Fig. S10 and Table S5).

In summary, drop-coating was used to make CsPbI2Br per-

ovskite  films.  The  wettability  of  CsPbI2Br  solution  was  im-
proved  by  adding  IPA,  leading  to  increased  crystallinity,  im-
proved  film  morphology,  reduced  trap  states,  and  enhanced
solar  cell  performance.  The  best  device  delivered  a  PCE  of
16.27%.
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Fig. 1. (Color online) (a) Illustration for the drop-coating process. (b) XRD patterns for CsPbI2Br films made without or with IPA. (c) SEM image for
the film made without IPA. (d) SEM image for the film made with IPA. (e) Dark I–V curves for the electron-only devices made without or with IPA.
(f) J–V curves for the best cells made without or with IPA.
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